
Overture Tools for Geometry Management and
Mesh Generation

Kyle Chand
Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, California
www.llnl.gov/CASC/Overture

Overture team: David Brown, Kyle Chand, Petri Fast,
 Bill Henshaw, Brian Miller, Anders Petersson,
 Bobby Phillip, Dan Quinlan

Overture: A Toolkit for Solving PDEs

CAD Geometry
Fig: Anders Petersson

Hele Shaw flow of a non-Newtonian fluid.
Fig: Petri Fast.

Overlapping Grids
Fig: Bill Henshaw

Hybrid Meshes
Fig: Kyle Chand

Geometry

Grid Generation

PDE Solver Development

Moving Piston, Incompressible Navier-Stokes
Fig: Bill Henshaw.

Geometry : mesh generation and PDE discretization

Initial geometry and
grid generation
(surface and volume grids)

Adaptive meshes and
moving/deforming grids
(projection, grid generation, etc)

PDE Discretization:
Mapping derivatives (curvilinear grids)
Higher order Mapping information
Boundary conditions...

Geometry modeling requirements

Creation and importing of geometry (especially from CAD,
but not limited to it)

Manipulation operations (intersection, trimming, sectioning,
etc)

Fast queries for projection and surface derivatives

Low memory and high performance for geometric queries in
simulations (also a nice interface for such codes...)

Low cost (Free!) for us and other researchers

Solution : Implement our own geometry code

One Option:
Directly interface commercial CAD/Geometry software
+ Robust and accurate interpretation of geometry
+ No need to support the software
- Proprietary and expensive
-/+ Generic interfaces for CAD/3D Geometry creation
- Accuracy is product dependent (translations are poor)
- Efficiency?

Our Solution:
Write the tools we need, give them the interfaces we want

 + Generic to many 3rd party CAD/Geometry tools via neutral files
+ We control the performance and accuracy to meet our needs
+ Open source allows researchers to advance the state of the art
- Translation errors and lost information must be resolved.
-/+ We have to develop and support the code

Overture: A toolkit for solving PDEs

Mappings
(geometry)

MappedGrid
GridCollection

MappedGridFunction
GridCollectionFunction

 Operators
div, grad, bc's

Grid Generators
 Ogen, Ugen

Adaptive Mesh
 Refinement

 Solvers
Oges, Ogmg, OverBlown

 A++P++
array class

Data base
(HDF)

 Graphics
 (OpenGL)

 Boxlib
(LBL)

User Interface
(text,X11,Motif)

Rapsodi : A geometry toolkit for mesh
 generation and discretization

rap

A Mapping defines a continuous transformation

SquareMapping, AnnulusMapping,
SphereMapping, HyperbolicMapping,
EllipticTransform, MatrixTransform,
TrimmedMapping,...
 > 40 Mappings

unit square

X

r
Each mapping has an
optimized map and
inverseMap

Map

Mappings encapsulate the interface to geometry

class Mapping
{
public:

virtual void map(...);
virtual void inverseMap(...);
virtual int project(...);

int getDomainDimension();
int getRangeDimension();
Bound getRangeBound(...);

 ...
};

Menagerie of Mappings

Menagerie of Mappings

{Depth,Sweep}Mapping RevolutionMapping

TrimmedMapping

CompositeSurface

Each sub-surface is a Mapping

class CompositeSurface : public Mapping
{
public:

int project(...);

int numberOfSubSurfaces();
Mapping & operator[](int);
int add(...);
int remove(...);

CompositeTopology *
getCompositeTopology();

 ...
};

Describes geometry using a collection of Mappings

Often obtained from CAD translations:
can contain too much detail
are error prone

CompositeTopology

Triangulation is a search data structure,
NOT a computational mesh

Each triangle maps onto only one sub-surface
 --> Fast searches for projections:
 -> First project onto triangulation using

a geometric search tree or a walk
from a previously cached triangle

 -> Then project onto the
triangle's sub surface

Encapsulates the relationship between component surfaces
Automatically detects and corrects small gaps and overlaps
Triangulation provides a fast data structure for projection
Automatic refinement based on surface deviation

--> useful output to other mesh generators (e.g. cart3d)

Composite Surfaces

Rap: Composite Surface Editing

Sub-surface manipulation
Error detection

Geometry correction
Geometry modification

Using Mappings for geometry and mesh generation :
specific examples

Example 0 : Overture/Rapsodi fundamentals
library initialization
creating a simple Mapping
basic plotting

Example 1 : An interactive IGES reader and data query tool
creating or reading a CompositeSurface
use of map, inverseMap and project
introduction to IntersectionMapping

Example 2 : A 2D unstructured mesh generator
an application that uses Rapsodi within its

own infrastructure
grids as evaluations of Mappings
UnstructuredMapping

Example 0: Build and plot a Mapping

#include "GenericGraphicsInterface.h"
#include "PlotIt.h"
#include "BoxMapping.h"

int main(int argc, char *argv[])
{

// initialize the Overture library
Overture::start(argc,argv);

// ask the library for a graphics interface
GenericGraphicsInterface &gi =

*Overture::getGraphicsInterface()
GraphicsParameters gp;

BoxMapping box;
PlotIt::plot(gi,box,gp);

// let the library clean up after itself
Overture::finish();

return 0;
}

Example 1: IGES reader and query tool

G
ra

ph
ic

s
an

d
G

U
I

CompositeSurface

IgesReader

rapEditModel

IntersectionMapping

nurbsCurveEditor

UnstructuredMapping

...

TrimmedMapping

NurbsMapping

M
ap

pi
ng

Read, view and edit IGES files
Query points on the model
Intersect the model with arbitrary planes

-->edit and output the resulting curves

1200 lines of code, mostly gui

Example 1: Slice curve from an IGES model

Example 1: Code examples

Interactively read and plot an IGES file:
GenericGraphicsInterface & gi =

Overture::getGraphicsInterface();
MappingInformation mapInfo;
CompositeSurface model;

if (rapNewModel(gi, mapInfo, model))
PlotIt::plot(gi,model);

-- Or, without the GUI and graphics:
MappingsFromCAD cadReader;
IgesReader *igesReader=NULL;
int nNurbs, nFE, nNodes, status;

cadReader.fileContents("file.igs",igesReader, nNurbs,
nFE, nNodes,status);

model = cadReader.readSomeNurbs(mapInfo,
igesReader, 0, nNurbs, nNurbs, status);

Example 1: Code examples

Projecting points onto a CompositeSurface (or Mapping):
CompositeSurface model; // get model from somewhere
RealArray xToProject;
// fill in vertices to project...

MappingProjectionParameters mp;
model.project(xToProject,mp);

Intersect 2 Mappings using an IntersectionMapping
Mapping &map1 = someMapping; // surface in R3
Mapping &map2 = anotherMapping; // surface in R3
IntersectionMapping intersection;

intersection.intersect(someMapping, anotherMapping);

intersection.map(...);
intersection.project(...);

curve intersection is similar

Example 2: Simple 2D mesh generator

Unstructured, multi-region 2D meshes
Uses three tools for mesh generation

1. TFIMapping
2. AdvancingFront
3. User created cutcell + AdvancingFront

4048 lines of code:
1388 for interactive gui/graphics/error handling (Overture GUI)
1812 for the "application" (uses Overture Mappings)
848 for the cutcell algorithm (no Overture code)

 Application Specific Code

cutcell

G
ra

ph
ic

s
an

d
G

U
I

DataPointMapping

AdvancingFront

UnstructuredMapping

TFIMapping

NurbsMapping

SquareMapping

nurbsCurveEditor

...

Example 2: Sample meshes

Example 2: Interactive interface

Example 2: Code examples

Mappings can be evaluated to generate a grid

Mapping &map = someSpecificMapping;
RealArray xGrid;

// either use Mapping::getGrid
map.setGridDimension(axis, nX1);
xGrid = map.getGrid();

// or provide a grid in the domain to a specialized map
RealArray rGrid = ...;
map.mapGrid(rGrid,xGrid); // or map a list of vertices

A grid of vertices in the range can also be inverted:
(useful for projecting patches onto surfaces)

Mapping &map = someSpecificMapping;
RealArray rGrid,xGrid;

map.inverseMapGrid(xGrid,rGrid); // or inverseMap

Example 2: Grid generation with Mappings

Mapping *left, *right, *bottom, *top;
//...
TFIMapping tfi;
int nX1, nX2;

tfi.setDomainDimension(2);
tfi.setRangeDimension(2); // = 3 for a surface

// set the sides, note these are referenced!
// could add front/back too...
tfi.setSides(left,right,bottom,top);

tfi.setGridDimensions(axis1, nX1);
tfi.setGridDimensions(axis2, nX2);
RealArray &grid = tfi.getGrid();

Useful Mappings for grid generation:
BoxMapping StretchMapping
HyperbolicMapping ComposeMapping
CylinderMapping RevolutionMapping
SweepMapping DepthMapping

UnstructuredMapping

UnstructuredMapping is special:
map/inverseMap not available
grid size is immutable
project is available
supports 2 and 3D hybrid meshes
can be read from ply, ingrid-style and IGES files
can be written to Overture database and ingrid-style files
currently has implicit connectivity based on arrays

class UnstructuredMapping : public Mapping
{
public:

virtual int project(...);

int setNodesAndConnectivity(...); // + optimized versions
int buildFromAMapping(...); // + optimized versions

int findBoundaryCurves(...); // usefull for surfaces

const RealArray & getNodes() const;
const intArray & getElements() const;
// ... + other connectivity and Mapping methods

};

Some useful utilities

Fast geometric search tree

Interfaces to Jonathan Shewchuk's robust predicates
and delaunay triangulator

2 and 3D adaptive precision intersection functions
line-line (2D) and line-triangle (3D)
implementation uses Shewchuk's predicates

Interactive NURBS curve editor function (uses GUI)

Interactive CompositeSurface editor function (uses GUI)

HDF4 based database interface

2 and 3D AdvancingFront mesh generator

Graphics Interface : Setting up a GUI

GUIState gui;
gui.setWindowTitle("2 cent mesh generator");

aString pickCmd[] = {"mm noOp",..., ""};
aString pickLbl[] = {"no operation",

 ...,""};
int defPick = 0;
gui.addRadioBox("Mouse Selection",

pickCmd,pickLbl,
defPick,nRows);

aString pbCmd[] = {...};
aStirng pbLbl[] = {...};
gui.setPushButtons(pbCmd,pbLbl,nRowsPb);

aString tbCmd[]={...};
aString tbLbl[] = {...};
int tbState[] = {true,true,true,true};
gui.setToggleButtons(tbCmd,tbLbl,

 tbState,nRows);

aString txtLbl[] = {"Default dx, dy",""};
aString txtCmd[] = {"dxdy", ""};
aString txtInit[]= {".1",".1",""};
gui.setTextBoxes(txtCmd,txtLbl,txtInit);

gui.setExitCommand("exit","exit");

Graphics Interface : Using a GUI

GenericGraphicsInterface &gi = ...;

SelectionInfo select;
aString answer;

gi.pushGUI(gui);
while(1)
{

// blocks until something happens
 gi.getAnswer(answer, "", select);

if (answer.matches("exit"))
break;

else if (answer.matches(...))
//...

else if (select.nSelect)
// ...

else
{

aString msg =
"unknown command : "+answer;

gi.outputString(msg);
gi.createMessageDialog(msg, errorDialog);

}
}
gi.popGUI();

Graphics Interface : GUI comments

GUI if/elseif blocks take up lines of code, but are generally
not too complicated.

GenericGraphicsInterface maintains a stack of GUIs. There is no
omnipotent outer event loop. getAnswer serves as the
local event loop.

The user never sees the underlying GUI implementation; currently
the underlying code uses MOTIF, but is limited to one file...

GenericGraphicsInterface may not even use graphics! It can
operate in a purely text mode

GenericGraphicsInterface :
also handles the reading/writting of command, log and hardcopy files
getAnswer intercepts certain inputs such as

rotation/translation/zoom, clipping, view parameters...
non-blocking getAnswer enables the interruption of long

computations

Caveat Emptor

There are some bugs and idiosyncrasies

Development model is informal:
Reasonable but not Rigorous

Development is moving to Linux:
open issues include remote OpenGL/X11 performance

While developed for our research applications, the library is
also useful for rapid prototyping

Obtaining Overture

Overture home page:
www.llnl.gov/CASC/Overture

